大家好,小东方来为大家解答以上的问题。变量之间的关系有两类,变量之间的关系有( )这个很多人还不知道,现在让我们一起来看看吧!
1、基本定义:变量:在某一变化过程中,数值发生变化的量。
2、常量:在某一变化过程中,数值始终不变的量。
3、 变量和常量往往是相对的,相对于某个变化过程,在不同研究过程中,作为变量与常量的“身份”是可以相互转换的。
4、常量与变量的判定:变量:就是没有固定值,只是用字母表示,可以随意给定值的量。
5、 常量:就是有固定值得量(可以是字母也可以是数字) 例如:1. y=-2x+4 y,x都没有固定值,是变量;4是固定的,所以是常量。
6、 2. n边形的对角线条数l与边数n的关系:l=n(n-3)/2 同上理由,n是变量;1,2,3是常量 3.圆的周长公式:C=2πR 因为π是个固定的数字(3.1415926535...)只不过是用字母表示,所以是常量,2也是常量;R和C没有确定值,都是变量。
7、判断一个量是常量还是变量,需看两个方面:在事物的变化过程中,我们称数值发生变化的量为变量,而数值始终保持不变的量称为常量。
8、常量与变量必须存在于一个变化过程中。
9、①看它是否在一个变化的过程中;②看它在这个变化过程中的取值情况。
10、自变量的取值范围有无限的,也有有限的,还有的是单独一个(或几个)数的;在一个函数解析式中,同时有几种代数式时,函数的自变量的取值范围应是各种代数式中自变量的取值范围的公共部分。
11、两个变量之间的关系①在某一变化过程中,可以取不同数值的值叫做变量.数值保持不变的量叫常量.常量和变量是相对的,判断常量和变量的前提是“在某一变化的过程中”,同一量在不同的变化过程中可以为常量也可以为变量,这是根据问题的条件而定的.常量和变量并一定都是量,也可以是常数或变数.②在某一变化的过程中有两个变量x与y,如果对于x在取值范围内取的每一个确定的值,y都有唯一确定的值与它对应,那么说x是自变量,y是x的函数,函数不是数,它是指某一变化过程中两个变量之间的关系.③自变量的取值必须使含自变量的代数式有意义.自变量的取值范围可以是无限的也可以是有限的.可以是几个数,也可以是单独的一个数,表示实际问题时,自变量的取值必须使实际问题有意义.④对于自变量在取值范围内取一个确定的值,函数都有唯一确定的值与之对应,这个对应值叫做函数的一个函数值.函数由一个解析式表示时,求函数的值,就是求代数式的值,函数的值是唯一确定的,但对应的自变量的值可以是多个.函数值的取值范围是随自变量的取值范围的变化而变化的.⑤函数的三种表示法:解析法、列表法、图像法.这三种表示法各具特色,在应用时,通常将这三种方法结合在一起运用,其中画函数图像的一般步骤为:列表、描点、连线.。
本文到此分享完毕,希望对大家有所帮助。